宗教信仰

家庭教会
[主页]->[宗教信仰]->[家庭教会]->[宇宙与精神的终极——第四章 分子如何构成细胞与生物演化过程]
家庭教会
·2010年11月圣爱团契祷告小结
祷告·中国2010年12月
·两月来众肢体不能来教会
·为近来时常失去自由的贾建英姊妹祈祷
·为胡石根高洪明严正学贾建英等肢体祈祷
·北京圣爱团契圣诞节街头传福音
·北京部分良心犯的岁末相聚
·2010年12月圣爱团契祷告小结
祷告·中国2011年1月
·为我们这个小小的家庭教会的福音工作祈祷
·为北京的民运、维权、上访等民间人士祈祷
·为一周后即将出狱的何德普祈祷
·让我们为出狱后的何德普祈祷
·我们教会的聚会被阻止请为我们祈祷
·2011年1月圣爱团契祷告小结
祷告·中国2011年2月
·狱中的胡佳我们给你拜年为你祈祷
·刚出狱的何德普又回到我们教会并做见证
·为遭软禁不能来主日敬拜的何德普祈祷
·2月20日圣爱团契众肢体被粗暴软禁
·22日圣爱团契部分肢体依旧被监视
·因两会对异议人士的软禁今天就开始了吗
·请为因两会不能来聚会的主内肢体们祈祷
·2011年2月圣爱团契祷告小结
祷告·中国2011年3月
·因两会被软禁的基督徒为秦永敏等朋友祈祷
·9级大地震应警示我们要为人类祈祷
·圣爱团契为仍未恢复自由的肢体们祈祷
·为记念主的好仆人袁相忱梁惠珍而祈祷
·追思记念中国的圣徒袁相忱梁惠珍
·2011年3月圣爱团契祷告小结
祷告·中国2011年4月
·让我们为中国祈祷
·为肢体胡石根、何德普、董继勤、倪玉兰祈祷
圣爱团契文稿
·在逼迫中恢复的一个北京团契
·北京基督教家庭教会圣爱团契文告(1)
·圣爱团契文告(2)
·圣爱团契文告(3)
·圣爱团契文稿4
·北京基督教家庭教会圣爱团契文稿(5)
·北京基督教家庭教会圣爱团契文稿6
·北京基督教家庭教会圣爱团契文稿7
·北京基督教家庭教会圣爱团契文稿8
·北京基督教家庭教会圣爱团契文稿9
·为维权自焚者王学勤祈祷
·为因两会而被限制自由的杨靖弟兄祈祷
·我一个良心释放犯基督徒要去申诉
·北京一家庭教会过圣诞
·我们必须具有信仰因为它是人的天性
·就鞍山市基督徒被警察马毅刑讯逼供一事致全国人大的一封
***
·新疆75事件后北京政治犯徐永海的公开信
·北京一政治犯的六封求助信与一本书
·揭开宇宙终极奥秘
***
·当代中国三大教案之一鞍山教案
·当代中国三大教案之二萧山教案
·当代中国三大教案之三两山后教案
***
·让我们一起公开高声地为主传福音吧!
·自然科学与宗教信仰的和谐统一
为主坐牢
·徐永海:为主做工、为主坐牢
·徐永海:在杭州看守所里我提起上诉
·徐永海:上诉书
·徐永海:在监狱里我提起申诉
·徐永海:申诉书
·徐永海:监视居住未抵刑期法官业务不精
·徐永海:就监视居住给中级法院的信
·徐永海:就监视居住给高级法院的申诉书
·徐永海:到全国最高法院上访记
·徐永海:申诉一年多未给答复就此事致最高法院的上访信
·2004年中国三基督徒被判刑之起诉书
·2004三基督徒被判刑之判决书
·2004三基督徒被判刑之裁定书
·因鞍山萧山两大教案我们被判刑坐牢
袁相忱
·中国家庭教会的发起人袁相忱牧师
·袁相忱老仆人的生命见证——你要誓死忠心
·家庭基督教徒袁福生
·主为我死,我为主活
·劳苦的人,在天国里安息
谢模善
·徐永海与谢模善牧师合影
·谢模善牧师:活为主活,死为主死
·追思主的好仆人谢模善牧师
·追思主的好仆人谢模善牧师
杨毓东
·杨毓东牧师回忆录
见证
·我们的家庭教会
·中国家庭教会杰出的传道人蔡卓华弟兄
·为主坐牢者的母亲李明芝
·一个基督教家庭教会的普通老基督徒:
·我的宗教维权经历
·维护宗教信仰权利是基督徒的本分
·维护老百姓的权益是基督徒的好行为
·弟兄姊妹的爱使狱中的我充满信心
·徐永海:我被带到派出所是要对我说在“中非论坛”期间不能离开家门
·为中国福音大会2006祷告
[列出本栏目所有内容]
欢迎在此做广告
宇宙与精神的终极——第四章 分子如何构成细胞与生物演化过程

  
     
     
               (科学研究成果报告)
     

                宇宙与精神的终极
     
                   徐永海
     
     
     
           前言一 我们为什么要单单地信仰耶稣基督
           前言二 榜样能给我们带来巨大的精神力量
           前言三 社会发展中大脑前额叶起重要作用
           前言四 宇宙空间是一个取之不尽的能量库
           第一章 量子如何构成粒子与量子粒子种类
           第二章 粒子如何构成原子与宇宙演化过程
           第三章 原子如何构成分子与各种能量活动
           第四章 分子如何构成细胞与生物演化过程
           第五章 细胞如何构成大脑与各种心理活动
           第六章 大脑前额叶的发达与爱情精神出现
           第七章 上帝掌管宇宙灵魂与耶稣拯救人类
           后记: 我的几次坐牢经历与本书完成过程
     
     
     
           第四章: 分子如何构成细胞与生物演化过程
                ——具有爱的群体才能更好的生存
     
     
   4.1(第4章第1节):蛋白质的生物功能
     
   4.1.1:植物的光合作用
     
     植物是绿色的,是因为在植物的细胞内,具有叶绿体。叶绿体内具有一种蛋白质,在这里,我们称它为叶绿体蛋白。叶绿体蛋白内的某个电子(电子云)可以接收可见光波,从空间中提取出光子(体积量子<弦•光子>),这个电子(即电子云,电子云就是电子)变大,它带有了能量。
     
     另一种蛋白质,它可以与叶绿体蛋白结合在一起。这时这个叶绿体蛋白的这个电子(电子云)放出光子(体积量子<弦•光子>),光子(体积量子<弦•光子>)加入到空间中,产生光波,不再是可见光波,应当是红外光波。另一种蛋白质内的某个电子(电子云)接收到这个光波(红外光波),从空间中提取出光子(体积量子<弦•光子>),这个电子(电子云)变大,它带有了能量。
     
     同样的方式,这个蛋白质也可以与其它蛋白质结合在一起。这时这个蛋白质的这个电子(电子云)放出光子(体积量子<弦•光子>),光子(体积量子<弦•光子>)加入到空间中,产生光波(红外光波)。其它蛋白质内的某个电子(电子云)接收到这个光波(红外光波),从空间中提取出光子(体积量子<弦•光子>),这个电子(电子云)变大,它带有了能量。同样的方式,所有的蛋白质都可以带有能量。
     
   4.1.2:生物的基本活动
     
     能量分子(ATP等)的某个电子(电子云)也可以变大,带有能量。能量分子这个电子(电子云)可以放出光子(体积量子<弦•光子>),光子(体积量子<弦•光子>)加入到空间中,产生光波(红外光波),肌纤维分子上的某个电子(电子云)接收到这个光波(红外光波),从空间中提取出光子(体积量子<弦•光子>),这个电子(电子云)的体积就会变大,这个电子(电子云)就会和同一肌纤维分子上的某个原子的原子核结合在一起,这时肌纤维分子的空间结构就会发生变化,肌纤维分子就会变短,肌肉运动就是建立在这基础上。
     
     酶蛋白的某个电子(电子云)也可以变大,带有能量。酶蛋白可以和靶分子(各种分子)集合在一起,酶蛋白上的这个电子(电子云)放出光子(体积量子<弦•光子>),光子(体积量子<弦•光子>)加入到空间中,产生光波(红外光波),靶分子上的某个电子(电子云)接收到这个光波(红外光波),从空间中提取出光子(体积量子<弦•光子>),这个电子(电子云)的体积变大,靶分子就要发生化学反应,就要变成为新的分子。借着各种各样的酶蛋白,借着各种各样的靶分子,借着相应的化学反应,可以得到各种各样的分子,这些分子可以是有机物分子,也可以是无机物分子。
     
     借着某些酶蛋白,可以得到甘油三酯,甘油三酯是一种简单的有机物分子。在甘油三酯基础上,可以形成膜,当膜上具有某些蛋白质时,这个膜称为单位膜。在单位膜基础上,可以形成各种细胞器,如内质网、高尔基复合体、线粒体(叶绿体)、滤泡等。在单位膜基础上,这些细胞器可以结合在一起,形成一个细胞,一个单细胞生物体。如果细胞内具有肌纤维分子,就是一个能运动的单细胞生物体。
     
   4.1.3:生物与光波
     
     伽玛光波、爱克斯光波、紫外光波,它们的波长较短。有机物分子,例如有机物大分子、蛋白质、DNA、RNA等,这些分子内的某些电子(电子云)要接收这些光波(体积量子<弦•光子>)。电子(电子云)变大,要发生化学反应,原有的分子结构要发生变化。原有的分子结构发生了变化,由这些有机物分子组成的细胞也要发生变化,可以是不正常的变化。细胞发生不正常的变化,生物个体也要发生不正常的变化。因此作为生物个体应该远离这些光波。
     
     可见光波,波长一般。大多有机物分子,例如有机物大分子、蛋白质、DNA、RNA等,这些分子内的电子(电子云)不接收这些光波,不发生化学反应,分子结构保持稳定。因此,作为生物个体不必远离这些光波。而且,生物个体内一些正常的反应(如光合作用)还需要可见光波,因此,作为生物个体还必需接触一定的可见光波。但是,当可见光波太多时,有机物分子,例如有机物大分子、蛋白质、DNA、RNA等,这些分子内的电子(电子云)也要接收这些光波,也要发生化学反应,分子结构也要发生变化。因此作为生物个体应该远离高强度的可见光波。
     
     射电光波,波长较长。有机物分子,例如有机物大分子、蛋白质、DNA、RNA等,这些分子内的电子(电子云)不接收这些光波,不发生化学反应,分子结构保持稳定。因此,作为生物个体不必远离这些光波。在广播电视的发射台,每时每刻都在发射着大量的射电光波,(如果转换成可见光波、红外光波,这就是一个巨大、巨大的火球),这些光波,对周围的生物个体没有影响。
     
   4.2(第4章第2节):DNA与RNA的生物功能
     
   4.2.1:蛋白质、DNA、RNA
     
     在自然界中,氨基酸具有20种,氨基酸的一端具有一个氨基,另一端具有一个酸基。借着氨基、酸基之间的化合反应,两个氨基酸可以连接在一起。借着氨基、酸基之间的化合反应,一系列氨基酸可以依次连接在一起,形成一个氨基酸链。氨基酸链就是蛋白质,蛋白质就是蛋白,不同的蛋白质可以具有不同的生物、生理、生化功能,如一些蛋白质具有酶的功能。
     
     在自然界中,嘌呤、嘧啶主要具有4种,分别是A(腺嘌呤)、T(胸腺嘧啶)、C(胞核嘧啶)、G(鸟嘌呤)。借着中间具有磷酸、戊糖,2个嘌呤嘧啶可以连接在一起。借着磷酸、戊糖,一系列嘌呤嘧啶可以依次连接在一起,形成一个嘌呤嘧啶链,嘌呤嘧啶单链就是RNA。
     
     不借着磷酸、戊糖,嘌呤、嘧啶A与T之间,C与G之间也可以连接在一起,形成嘌呤嘧啶对。为了叙述方便,我们将它们称为,A站在T的肩上,T站在A的肩上,C站在G的肩上,G站在C的肩上。一些嘌呤嘧啶对,依次排列在一起,借着磷酸、戊糖,肩上的嘌呤、嘧啶依次结合在一起;肩下的嘌呤、嘧啶也依次结合在一起。这样,就具有了一条嘌呤嘧啶双链,嘌呤嘧啶双链就是DNA。
     
   4.2.2:复制、转录、翻译
     
     在某些蛋白质(复制酶)的作用下,1条嘌呤嘧啶双链(DNA)被分开(撕开、劈开),变成了2条嘌呤嘧啶单链。借着嘌呤、嘧啶A与T、C与G之间的吸引力,在每条嘌呤嘧啶单链的一侧,分别排列着一个、一个单独的嘌呤、嘧啶。借着磷酸、戊糖,这一个、一个单独的嘌呤、嘧啶,就会依次连接在一起,这样在每条嘌呤嘧啶单链的基础上各自形成了一条嘌呤嘧啶双链。新形成的2条嘌呤嘧啶双链(DNA),与原来的那条嘌呤嘧啶双链(DNA),在嘌呤、嘧啶的排列次序上,是完全相同的。这样,1条嘌呤嘧啶双链(DNA)变成了和自己完全相同的2条嘌呤嘧啶双链,这称为复制。
     
     在某些蛋白质(转录酶)的作用下,一条嘌呤嘧啶双链(DNA)中的某段被分开(撕开、劈开),这时,1段嘌呤嘧啶双链变成了2段嘌呤嘧啶单链。借着嘌呤、嘧啶A与T、C与G之间的吸引力,在一段嘌呤嘧啶单链的一侧,分别排列着一个、一个单独的嘌呤、嘧啶。借着磷酸、戊糖,这一个、一个单独的嘌呤、嘧啶,就会依次连接在一起,形成一条嘌呤嘧啶单链(RNA)。嘌呤嘧啶双链(DNA)打开一段,产生一条嘌呤嘧啶单链(RNA),这称为转录。
     
     嘌呤、嘧啶具有4种:A、T、C、G,3个为一组,如:AAA、TTT、CCC、GGG、ATC、TAG等,一共具有64种组合方式。这一组嘌呤嘧啶称为一个密码,这样就具有了64种密码。每一种密码都只能和一种氨基酸之间具有一对一的吸附关系。嘌呤嘧啶单链(RNA)是由一个、一个嘌呤、嘧啶组成的,也可以说是由一个、一个的密码组成的。借着密码与氨基酸之间的吸附关系,在嘌呤嘧啶单链(RNA)的一侧就会依次排列着一个、一个的氨基酸。借着氨基、酸基之间的化合反应,这一个、一个的氨基酸就会依次连接在一起,形成一个氨基酸链,也就是一个蛋白质。借着一条嘌呤嘧啶单链(RNA)产生一个蛋白质,这称为翻译。
     
   4.2.3:细胞的形态、结构、功能
     
     细胞核内具有染色体,染色体是由嘌呤嘧啶双链(DNA)构成的。嘌呤嘧啶双链(DNA)打开一段,转录出一条嘌呤嘧啶单链(RNA),翻译出一个蛋白质。嘌呤嘧啶双链(DNA)中的这一段,称为蛋白质模版。在嘌呤嘧啶双链(DNA)上具有很多很多蛋白质模版,借着不同的蛋白质模版,产生出很多不同种类的蛋白质。
     
     在细胞质中,借着具有某种蛋白质,产生了甘油三酯,在甘油三酯基础上,形成膜、单位膜,在单位膜和一些蛋白质的基础上形成各种细胞器,如内质网、高尔基复合体、线粒体(叶绿体)、滤泡等。借着不同细胞器中具有不同的蛋白质,不同的细胞器具有不同的形态结构、功能活动。
     
     细胞膜也是一种细胞器,也是由膜和蛋白质组成的,借着细胞膜上的蛋白质,细胞膜也具有相应的形态结构和功能活动。如细胞膜上具有联接蛋白(一种蛋白质),几个细胞就可以连接在一起,形成一个多细胞生物体。

[下一页]
blog comments powered by Disqus

©Boxun News Network All Rights Reserved.
所有栏目和文章由作者或专栏管理员整理制作,均不代表博讯立场